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EDGE EFFECT IN THE BENDING OF A THIN THREE-DIMENSIONAL PLATE* 

I.S. ZORIN and S.A. NAZAROV 

The boundary layer near the rigidly clamped edge of a thin 
three-dimensional plate subjected to bending loads is investigated. It 
is shown that taking account of the next term in the deflection 
asymptotic form results in the appearance of inhomogeneities in the 
boundary conditions on the plate edge. It is proved that far from the 
edge the difference in the solution of the problem in an invariant 
formulation and the three-dimensional solution is inversely proportional 
to the plate thickness (the error for the Kirchhoff solution is 
inversely proportional to the square of the thickness; near the edge the 
accuracies of both solutions is identical). A correction term is found 
in a representation of the eigenfrequencies of the bending vibrations 
and a comparison is made with the Reissner theory. 

1. Formt&ation of the p~ob&nt. Let 8 be a domain on the plane Ra bounded:by a closed 
simple smooth (class Cm) contour 8% Q is a cylinder {x: y = (q,q)~ 8, 1 x9 f <'I'&} of 
low altitude k with side surface S, and bases rhf. We examine the three-dimensional problem 
of elasticity theory 

pAu(h,x)+(h + p)grad divu(h,x)+ h""f(y)e@) = 0, x~ Qh (1.1) 

u(S) (51; h, x) = p* (y)e@, x E Fh* W) 
u(h,x)=O, XE& (1.3) 
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Here h, p are Lame coefficients, e(j) are directions in RS, II = (ut, up, ua) is the 

displacement vector, p* and h-‘j are the transverse load and mass forces, UC') = (O>~Y Uagr 

%+a)* cl, are Cartesian components of the stress tensor o (u). Q&k is the Kronecker 

delta, and the subscript k after a comma denotes differentiation with respect to 5k. The 

characteristic dimension of the domain Q is reduced to one by scaling. Then the small 

parameter h and the coordinates become dimensionless. We will find several of the first 
terms of the asymptotic form of the solution it of Problem (1.X)-(1.3) as k-F@. We will 

use a modification of the well-known algorithm in II-# to construct asymptotic expansions. 

2. fntemur% solution. Par from S,, we will represent the solution in the form of the 
formal series 

u (h, x) - : W(V’ (y) -I- hU’ (y, h-%)) 
j=C 

VQ = eWwq, q = f&i; vj = (4,d), d -= (u,j, uJ) 
(2.1) 

where the components U,j(y, 5) (k = L2, 3) have zero means (UJ) (y) in 5 E (--"I,, '/a); 5 s 

h-‘x,. 
Let L and B be matrix differential operators from the left side of (1.1) and (1.2). 

It can be confirmed that they are represented as follows in the coordinates y9 6 

L (a/ax) = h-2~0 (aiagj - h-w pfay, aiaz) - ~2 way) 

B faiax) = h-w (abase - 31 (ahoy) (2.2) 

c (ak7fj = Mawp, 3” (aiag = %a!ap, M = diag (I& !I, li -t- 214 

We substitute (2.11 and (2.2) into (1.1) and (1.2) and collect coefficients of identical 
powers of h. We obtain recursion systems of equations with the parameter yYEQ to 
determine,the vector functions Uj 

Solving Problem (2.31, j = 0, 1, 2, successively, we have 

where the dot denotes the scalar product. 
solvable is the Sophie Germain equation 

The condition fox Problem (2.2) (j =3) to be 

%'lu" (Y) = P+ (~1 - P- iv) + f W, Y E 8; D - E 112 (r - uy- Gw 
where D is the reduced (h = i) cylindrical stiffness of the plate, E is Young's modulus, 
and Y is Poisson's ratio. The solution Us has the form 

us = 14p (i - v)J-” (I’/, (3 - 9) (5” - V,) - (a - Y2) (Ip --‘“/,J (p* - 
P- -I- I) -I- (2 - ZY) 15 (p, + p-) - (5’ - ‘/la) fl) ef3) -I- ‘/gf (1 - 

v)--’ I$? (2 - y) i- ‘/a (v - 6)) VA@ + v (f - vf-l K', ($F - 

l/rd A,wa - fVsvaJ et33 

cw 

Xn order for Problem (2.3) (j = 4) to become solvable, three conditions must be satisfied. 
Firstly, there is the analogous eguation to (2.5) 

DAy%&(yy=O, YES1 (2.5) 

and secondly, the system of two equations describing the generalized state of plane stress 

ph,v* (y) f p (1 + Y) (Ii-- v)-’ TV * v$ (y} = 
1/2Y(1-V)-1Vfp++P_)(Y), YEQ 

(2% 

3. !ik pPO&3ts fOP a fk7uahg %a&?F. Series iZ-1) does not satisfy Condition (I.31 on 
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the cylinder side surface S,. As we know, the residual that occurs is compensated by using 
a boundary layer. We introduce a set G of coordinates n, 53,s in the neighbourhood of r 
where n and s are the internal normal. and tangential components. We represent the solutions 
of boundary-layer type in the form a = (z,, 23, 2,). We set n = (A%, m-Q). The operators L 
and 8 written in n, %I s* coordinates can be split into the following formal series: 

It is clear that the operators P" and Q' do not contain differentiation with respect 
to s while their coefficients are constants. Moreover P" (a/an) = L @Van, O), Q" (0/0q) = 
B (a/@, 0). Thus, a boundary value problem is obtained from (1.1)"(1.3) to determine the 
boundary layer 

Problem (3.2) is considered in the half-strip R = {n E Ra: q1 > 0, Q I< ri,) and is 
divided into two: the plane problem of elasticity theory (the first two lines) and the problem 
of antiplane shear (the third line). Moreover, its data depend parametrically on the variable 
s; the symbol $ is omitted to shorten the notation. 

The following assertions are essentially known and are obtained by making the general 
results specific f5, 6/. (The calculations needed for this can be found in 141, say; see f7, 
81 also). 

Proposition 1. 1': Let the right-hand sides of (3.2) decrease exponentially as rh-+ + m. 
Then a unique solution z exists for Problem (3.2) with bounded components Z, and z,. The 
asymptotic expansion 

a(q) = c + (-7kC,,rlrC,, 0) + e(exp (-NJ), nl+ + m (3.3) 

holds for it for a certain S> 0. 
2". Exactly four linearly independent solutions exist 

y(j) (rl) = I + x(j) (3, j = 1, 2, 3, 4 (3.4) 

for the homogeneous Problem (3.2) that grow at infinity not more rapidly than a power of 

tll. The X(j) in (3.4) are subject to Conditons 1" of the solution of Problem (3.21 with 
right-hand sides H=O,G* =O, Q(Q) = --uP(j)(Oznqa) and the vectors VW are given by the 

inequalities 

3O. The constants G = (C,, C,, C,) and C, from (3.3) are evaluated from the formulas 

Cj=ajA(Gf,8,~;Y"'), i=1,2,4 (3.6) 

A(G*,H,W')=S Y'(q).H(q)dqt 1 T"'(Y;0,qz),Q,(qr)dqn+ 
n -'I* 

~~~Y'(q,,ir'!a).Cf(q~)dq,, Y'=fY,,Yz,O) 

Applying (3.3) and (3.61 to the solution (3.41, i=4 we arrive at the following 
assertion. 

Proposition 2. The following relationships hold 



X@) (q) = (c(v) rlat b (v) - c(v) vlT 0) + 0 (exp (--6rh)h rll -+ += 

c (v) = D-cl (X(4), X(4); II) 

3(X,Y;n)=E-‘(1 +v)s i [Tjk(X)Tjk(Y)~-vTjj(X)Tkk(Y)]d~ 
II j, k=l 

T(l) = (Tll, Tl2zO); Tjk (2) = P (%Jfhj + azj/%_) t 6, khV,*z 
Tjq(Z) = Taj(Z) s @8Z&/&jj* T=(Z) = hV,.Z, j, k = 1,2 
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(3.7) 

The dependence of the quantity C(V) on Poisson's ratio determined by using computer 
computations is represented in Fig.1. 

4. The boundary conditions on ~32. In order to compensate the residual of series 
(2.1) in the boundary Condition (1.3), we shall seek the boundary layer in the form 

OEl 
~(h, .z)- 2: Wzj(h%, h%,,s) (4.1) 

j=u 

6 
where q --f .j (11, s) is a vector function decreasing 

w exponentially as ?j,-++oO. To the accuracy 0 (h-1) 
the residual mentioned equals 
(s_ 0), --WI (s, 0}, qz u.& (& 0)) 

.kS (0, w" (s, o),o)+ A-% (?h$& 
on & in the coordinates 

11, S * According to Proposition 1, 3O Problem (3.2) 
with appropriate right-hand sides has solutions a" and 

J 2' that vanish at infinity only if the following eyual- 
ities are satisfied: 

w" (y) = 0, (aw”/an) (y) = 0, (4.2) 
y E aa 

w’ (y) = 0, y E an (4.3) 
D - ff. 25 5 0.5 

Here z"=s' =O. Furthermore, the vector z2 is 

Fig.1 
a solution of Problem (3.2) in which H = O,IG-I = 0 and 

Y(& = ~~~~~~~s,O), -Vzv ff -vy)-'(qz2- l~~~)A~~*(~,O)- w2(s,o),o) (4.4) 
Comparing (4.4) with the boundary Conditions (3.5) mentioned in Proposition 1 for the 

solution X(4', we find that 

zp(q,s) = wf,(s,O)(~e@) - qre(")- e@W(s, 0) + k4'(q) A,,w"(s,O) (4.5) 
Applying Proposition 2, we obtain that the requirement of an exponential decrease in 

the vector (4.5) yields the equality 

U&(Y) -t- c W 4~” (Y) = 0, Y E BP (4.6) 
W”(Y) = A (v)A$u”(y), y=aQ (4.7) 

The relationships (4.2), 
(2.5) and (2.7). 

(4.3) and (4.6) are the necessary boundary conditions for Eqs. 

5. dustification of the asyn@totic ezpansion. We will first find the first terms of the 
asymptotic form of the stress tensor components that are generated by the sum of the series 
(2.1) and (4.1). According to (2.4) and (2.6), far from the side surface Sh we set 

o& = - 12Dgh-’ [VSj, kAu + (1 - V) aa/8yjayk] (W” + hw’) 

0% = GDh-’ (E” - V4) (Bl8yJ Av (w” + hd), j, k = 1, 2 

cc3 = l/e (p, -I- p- - 25f f 5 (3 - 4m (P, - P_ + f)) 

(5.11 

The boundary layer yields an additional stress field near the plate edge. The appropriate 
tensor eE written in n, xg, s, 
A,, woe@) 

coordinates is calculated in the displacements h-l;d(z’-f- b(v) 
(the reasons for introducing the component b (v) A,w'e@) are clarified before 

Proposition 4) by using the usual formulas for the state of plane strain and equals 
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where x is a smooth shearing function, and the quantities T,, are mentioned in Proposition 
1, 3". We emphasize that by virtue of Proposition 2 the residuals occurring because of multi- 
plication by the cutoff x(n) are exponentially small. 

The displacement vector u0 = h-*e(Q" + h-2U" (see (2.1) and (2.4)) and the stress 
vector 0' (terms of the order of 0 (h-1) and 0 (I), respectively, are discarded in the 
first two formulas in (5.1) 1, are called the fundamental approximation to the solution of 
Problem (l.l)-(1.3). By analogy the displacement u1 = h-%$3) (l1.i' + 
(z" i_ b (v) A,w"e(~,) 

hw') + !--2&J" + hU') -+- xh-' 
and the stress 01 z (I* - t o= should be considered to be second-order 

approximations. The latter is needed in the foundation. An assertion concerning the 
fundamental term of the asymptotic form is known /9, lo/. 

Proposition 3. Let f* p* -7 L, (SZ). Then the inequality 

holds for the solution of Problem (l.l)-(1.3). 
The norm in L, (Qd is here calculated throughout; the subscripts j,h- take the 

values 1, 2; d (Y) is the distance between the point Y and dQ the constant c is indepen- 
dent of h; E, is the sum of the norms of the quantities fl PrL: in W,a (Q), a. = 0,l. 

If f,p-+E w*'(n) we obtain from (2.51, (2.2) and (2.71, (4.3) and (4.6) that w"E w,' 
(Q), w'E w:(Q), Aw" E IV2 (a). Consequently, the second approximation possesses the requisite 

smoothness. Moreover, the errors left in (l.l)- (1.3) have the structure of the errors of 
the first approximation, and their order is one higher as h-+0. We especially emphasize 
that the boundary Condition (1.3) is satisfied because of the presence of the component xh-lb(v) 
AVwO in uQ1. This expression depends smoothly on the variable YE 8, its residual in 
(1.1) and (1.2) is small, elimination of such a non-decreasing term of the boundary layer 
occurs at the next step of the algorithm (see (4.7)). The following assertion results from 
the above. 

Proposition 4. Let f, p* E w,’ (8). If the subtrahend on the left in (5.2) is replaced 
by the second approximationto the solution of Problem (l.l)-(1.31, then the majorant takes 
the form c,h’E,. 

In particular, Proposition 4 shows that the estimate (5.2) is not improvable and asymp- 
totically exact since the norms on the left in (5.2) calculated from the boundary layer 
are of order he2. 

We will now turn our attention to the following important fact. Propositions 5 and 4 
yield an estimate of the asymptotic approximations only in the mean (in an energetic metric) a 
Meanwhile by using local estimates /ll/ of the solutions of general elliptic boundary value 
problems estimates can be deduced /12/ of solutions of problems (l.l)-(1.3) in the H&der 
spaces C'Ba (Oh \r,t, T/l are small neighbourhoods of singular lines-edges 861 x {&'/&I. 
Unfortunately, the inequalities obtainedin this manner are unsatisfactory: because of the 
smallness of the "thickness" of the domain Qh the estimates mentioned contain the parameter 
h and the constant c (h) in the final inequality has a power growth as h-0. The possibility 
of constructing smaller terms of the asymptotic form eliminates this disadvantage. It is 
sufficient to take a certain number of "superfluous" terms of the series, to use a rough 
estimate in the Holder spaces, and then to refer them to the remainder by evaluating the 
norms of these terms directly. We emphasize that the results /13/ on elliptical boundary 
value problems with ribs on the boundary enable the estimate to be extended to the whole 
cylinder Qh. 

We present an inequality for the second-order approximation under the assumption that 
the right-hand sides in (1.1) and (1.21 possess sufficient smoothness 

~u~-u~'~+h-'{~~j-utrji~~d*/o(u)--o'j)~ch-' (5.3) 

Here the displacements and stresses are calculated at any point XEQ~: d+(z) is the 
distance between x and the rib dC2 x {*'i,M. We note that the estimate (5.3) remains valid 
if the displacement ~~1 is determined without taking the boundary layer into account. 

An estimate of the closeness of the vector u* = h-se(a) (20" + hw') + h2(u0 + hU’) and the 
tensor o* to the solution of Problem (l.l)-(1.3) is needed later. Since the boundary 
layer is concentrated in a small neighbourhood of the side surface Shr its influence can be 
eliminated because of the introduction of additional weighting factors d+h into the norm 



from the left side of (5.2). Therefore, by using the estimate the following 

obtained from Proposition.4. 

Proposition 5. Let f,pk ~Ww,l($2). The following inequality holds: 

II@ + V(% - &*) II + h-' /I Uj - Ilj* II C II ‘gd (“J - %*) II + 
h-‘/l (d + h) V (Uj - lLj*) II + h /I (d + h)-’ (a/ax$) (Us - u3*) II + 
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assertion is 

(5.4) 

il(a,/aJ,)(Uj-Uj*)ll + h-‘Il(3 + h)(Jjk(U) -Ojk*)II + Il”A9(“)-uaj3*II + 

h-1 Il (d + h) (s,, (3) - %3*) II s ch-‘% 

We note that the estimates (5.2) and (5.4) are identically accurate in a tit- neighbour- 
hood of S,, but the estimate (5.4) is more exact by an order far from the side surface Of 
the cylinder Qh (in the zone d+h&i). 

6. The combined ppubtm. The scalars w" and rul are solutions of the same kinds of 
Problems (2.51, (4.2) and (2.71, (4.3)‘ (4.6). Consequently, it is natural to combine their 
boundary conditions by formulating a new boundary value problem whose solution will coincide 
with the sum w" + hw’ to 0 08 accuracy. The simplest such problem is 

DA.,2m*(k Y) = P,(Y) - P-(Y) + f(y), YE? $1 (6.1) 
w*(h,y)= 0, (&u*/an)(h,y) + c(v)h4,!u*(:L, y) = 0, ye 62 

However, the energy functional corresponding to (6.1) is positive-definite just for 
v=o (for v>o the constant c(v) is positive because of (3.7)). To construct the 
combined boundary value problem with a positive energy functional, we introduce a regularly 
perturbed domain 9:, = (ye: 8: n> c(v)@ C 9. In other words, we remove a boundary strip of 
small width from the domain fz in which the influence of plate edge clamping is essential. 
We consider the problem 

DA,2w* (k y) = P+ (Y) - P_ (Y) f f(y)* y E L-k!, 

w* (h, y) = (dm*/dn) (h, y) = 0, YEan,, 

in 52, 

Proposition 6. If f, p& Z W,* (8), then the estimate 

II Iu* - w" - law'; W,~(sl,)~~ Q chZ 

(fw 

(6.3) 

is true for the solution of Problem (6.2) and (6.3) where W" and n.9 satisfy Conditions (2.5), 

(4.2) and (2.71, f4.3), and (4.6). 

PFOO~. We expand 19 and ~1 in Taylor series in the variable n and substitute the sum 
tu= + hw’ into the boundary Condition (6.3). For n = c(v) h we have 

w"(y) fiiiul{y)=ktu'(O,s)+ u(h:) (6.4) 

Since d=wOian= = AWN by virtue of (4.2) on an, it follows from (4.3) and (4.6) that the 
right-hand sides are of the order of ha. It remains to use the estimates of the solutions of 
the elliptical problems (since the perturbation of the domain is regular then, according to 
/14, 15/ the constant in the appropriate inequality is independent of h). 

As in the case of (2.4) we set 

U* = h-se@) [w* + ‘/,zh% (1 - v)’ (5” - 1/12) A,ru*] - h”“~Vw* (6.5) 

and use the notation Bfh*r Zfs*r I:,,* for the stresses calculated by means of (5.1) in 
which the sum w" +hd is replaced by w*. There results from Propositions 5 and 6 

Proposition 7. If f, p* E W,l (Q), then the inequality (5.4) is true in which the 
quantities U*,Z* take part in place of u+,o*. 

7. EZQs@Q. To estimate the accuracy of the approximate formulas we computed the problem 
of the bending of a beam clamped at the endfaces by a constant transverse load on a computer 
by using two-dimensional finite elements, for B = 0.3, h = 0.2, 6a = (--V,, l/a. The binomial 
asymptotic expansions of the beam deflection determined according to Propositions 6 and 4 are 
identical to 0 (h-l) accuracy and are given by the equalities 
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w* (z, k) = 2pi?-‘k-3 (9 - (c (v) k - ‘/,)a)* (7.1) 

k”W, (5) + It-%* fs) = 2pD-‘k-3 (22 - I/,) (3 + 2c (v) h - 1/J 

(dimensionless coordinates). Graphs of the computer computations (curve I), the function 
(7.1) (curve 2), and the Kirchhoff solution (dashes) are represented in Fig.2 o = (2p)-’ wD. 

We note that the relative error in the calculations of the normal displacements at the middle 
part of the beam is 5-6% by the Kirchhoff theory (as compared with the numerical solution) 
and does not exceed l-2% when using (7.1). 

8. Platie bending vibrations. According to Proposition 7, 
the solution,of Problem (6.2) and (6.3) reaches an asymptotic 
approximation of increased accuracy far from the edge S,, of 
the plate Qh_ It is natural to use this circumstance to find 
the refined eigenfrequency asymptotic form. The system of 
equations 

pAu (h, x) + (h + p) grad div u (h, x) I_ pk (h)2 u (h, x) = 0, x E 01, (8.1) 

with homogeneous boundary Conditions (1.2) and (1.3) (under 
the assumption that ug is even and U1r ua are odd functions 
of the variable x3) describes plate bending vibrations. It 

i is known that the solutions of the spectral equation 

DAV2w” (y) = pk02w0 (y), y E ci (8.2) 
o,zs 0.J with boundary Conditions (4.2) yield the asymptotic form 

kfn) (h) = hk,c”) + 0, (h’) of the eigenfrequencies of such 
Fig.2 vibrations (the estimate of the remainder is worsened as the 

number n-i,&... increases). Combining the results 
obtained in the previous sections with the known procedure for 

constructing the asymptotic form of the eigenvalues of singularly perturbed elliptical boundary 
value problems (see /6f, Ch.2, say), we obtain that the solution of the spectral equation 

DAVzw*(y,h)= pk*(~)zw*~y,~), YE& (8.3) 

with Conditions (6.3) on i)Q,, yields an approximation to k(h) with increased accuracy 

0, (ha). We will formulate the appropriate assertion. 

Proposition 8. The reltionships kc”) (h) = hk,(“) (la) + 0 (ha) hold, where n = 1, 2, . . ., 
kc”) (h) and k*(“) (h) are eigenfrequencies of Problems (8.1), (1.21, (1.3) and (8.31, (4.21 
arranged in non-decreasing order (taking multiplicity into account). 

We mention still another asymptotic representation for k (M. We assume that il0 = D-‘pkoa 

is a simple eigenvalue of the Dirichlet problem for the biharmonic operator and we normalize 
its corresponding eigenfunction in La(Q). Repeating the computations from Sects.2 and 4, we 
obtain that the quantity hl in the representation 

A (h) = he (A, + &A, + 0 (h2)) (8.4) 

for the eigenvalue of the operator of problem (l.l)-(1.31 is found when solving the equation 
A8V = A,& + A#' with the boundary Conditions (4.31 and (4.61. By using Green's formula 
the conditions for such a problem to be solvable are reduced to the form 

Al = c(v) s I lip0 (Y) I2 d.3 (8.5) 
LYR 

Therefore, the relationship k (h) = hko (1 + ‘lrp-‘DhAlko-a +- 0 (ha)) holds. See /16/ for its 
proof. We recall that D is the reduced cylindrical stiffness of the plate (h= I). By virtue 
of (3.7) and (8.4) A, is a non-negative quantity. Therefore, the eigenfrequencies in Problem 
(8.21, (4.21 yield an approximation to the eigenfrequencies of the bending vibrations of the 
plate Qh with a disadvantage. 

We present the expansions of the eigenfrequency kB fh).= IDp-lhR(h)]Yr of the Reissner plate 
bending vibrations 

where A, and w" are the same as in (8.41 and (8.51. (Formula (8.61 can be obtained by 
using the results in /17/ when considering the Reissner plate theory problem as a singular 
perturbation of the Kirchhoff theory problem). Comparing (8.41, (8.51 and (8.6) we see that 
the correction hSk,R of the eigenfrequency by Reissner theory differs in order and is not 
sign-definite. 
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Formula (8.4) contradicts the inequality k(h),< k,(h) that is evident at first glance. 
The appropriate "proof" for the first frequencies is naturally carried out by using the 

Rayleigh principle 

pk(h)* = inf {~~(u)~~u;L,(Q,)~~-~~uEW,~(Q~),U = 0 On SJ (8.7) 

pk,W = inf(2h23x(w)llLu;L,(S2)11-2 I w E Wza(Q),w = aw/dn on aa} (8.8) 

3x (w) ='I& IlAw; -& (Q) 11' 

(3 (4 is the three-dimensional plate strain energy). The vector field of the displacement 

U1” = (---x,V,w 4 E W$ (Q,,), is constructed by means of the function W, and satisfies the 
boundary conditions on the plate side surface and seemingly ihf {23 (u))) U II-“} in every case 
is not less than the right-hand side of (8.7) in a narrower set {u"}. The error is that 

3 (u") = (1 + 6)hS 3r (w), 6 = Y2 (1 - zvy, and the infimum of the quantity 2h2(1 + 6) 3K (w) 

(II w II2 + ‘l# II VuJ II”)-’ must be sought in the set (u"). Therefore, application of the 
Rayleigh principle does not yield on a priori estimate for the eigenfrequency k(h). 

We note that because of the smallness of the quantity C(Y) the correction term CJ(c(v)h) 
can be less than the next term of the asymptotic form 0 (h2). Consequently, the correction 
found is decisive in the asymptotic form only for thin plates (according to computer com- 
putations for h< i/20). 
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